Noncommutative spaces of worldlines

In this new paper (arXiv:1902.09132), the space of time-like geodesics on Minkowski spacetime is constructed as a coset space of the Poincaré group in (3+1) dimensions with respect to the stabilizer of a worldline. When this homogeneous space is endowed with a Poisson homogeneous structure compatible with a given Poisson-Lie Poincaré group, the quantization of this Poisson bracket gives rise to a noncommutative space of worldlines with quantum group invariance. As an oustanding example, the Poisson homogeneous space of worldlines coming from the κappa-Poincaré deformation is explicitly constructed, and shown to define a symplectic structure on the space of worldlines. Therefore, the quantum space of κappa-Poincaré worldlines is just the direct product of three Heisenberg-Weyl algebras in which the inverse of the kappa parameter plays the very same role as the Planck constant ℏ in quantum mechanics. In this way, noncommutative spaces of worldlines are shown to provide a new suitable and fully explicit arena for the description of quantum observers with quantum group symmetry.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.