A unified approach to Poisson-Hopf deformations of Lie-Hamilton systems based on sl(2)

Based on a recently developed procedure to construct Poisson-Hopf deformations of Lie-Hamilton systems, a novel unified approach to nonequivalent deformations of Lie-Hamilton systems on the real plane with a Vessiot-Guldberg Lie algebra isomorphic to 𝔰𝔩(2) is proposed in the paper arXiv:1803.07404. This, in particular, allows us to define a notion of Poisson-Hopf systems in dependence of a parameterized family of Poisson algebra representations. Such an approach is explicitly illustrated by applying it to the three non-diffeomorphic classes of 𝔰𝔩(2) Lie-Hamilton systems. Our results cover deformations of the Ermakov system, Milne-Pinney, Kummer-Schwarz and several Riccati equations as well as of the harmonic oscillator (all of them with t-dependent coefficients). Furthermore t-independent constants of motion are given as well. Our methods can be employed to generate other Lie-Hamilton systems and their deformations for other Vessiot-Guldberg Lie algebras and their deformations.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.