Curved momentum spaces from quantum (Anti-)de Sitter groups in (3+1) dimensions

In this new paper (arXiv:1711.05050), curved momentum spaces associated to the κ-deformation of the (3+1) de Sitter and Anti-de Sitter algebras are constructed as orbits of suitable actions of the dual Poisson-Lie group associated to the κ-deformation with non-vanishing cosmological constant. The κ-de Sitter and κ-Anti-de Sitter curved momentum spaces are separately analysed, and they turn out to be, respectively, half of the (6+1)-dimensional de Sitter space and half of a space with SO(4,4) invariance. Such spaces are made of the momenta associated to spacetime translations and the “hyperbolic” momenta associated to boost transformations. The known κ-Poincaré curved momentum space is smoothly recovered as the vanishing cosmological constant limit from both of the constructions.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.