A new integrable anisotropic oscillator on the two-dimensional sphere and the hyperbolic plane

In this paper (arXiv:1403.1829) we present a new integrable generalization to the 2D sphere and to the hyperbolic space of the 2D Euclidean anisotropic oscillator Hamiltonian with Rosochatius (centrifugal) terms, and its curved integral of the motion is shown to be quadratic in the momenta. In order to construct such a new integrable Hamiltonian, we  make use of a group theoretical approach in which the curvature of the underlying space is treated as an additional (contraction) parameter, and we make extensive use of projective coordinates and their associated phase spaces. These findings supports the conjecture that for each commensurate (and thus superintegrable) m:n Euclidean oscillator there exists a two-parametric family of curved integrable (but not superintegrable) oscillators that turns out to be superintegrable only when the parameters are tuned to the m:n commensurability condition.

Poincare

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.