Speaker:** Flaminia Giacomini (University of Vienna, Austria)**

Date and time: March 13th, 12:00 h

Place: Aula 24, Facultad de Ciencias

# Author: angballesteros

# Noncommutative spaces of worldlines

In this new paper (**arXiv:1902.09132**), the space of time-like geodesics on Minkowski spacetime is constructed as a coset space of the Poincaré group in (3+1) dimensions with respect to the stabilizer of a worldline. When this homogeneous space is endowed with a Poisson homogeneous structure compatible with a given Poisson-Lie Poincaré group, the quantization of this Poisson bracket gives rise to a noncommutative space of worldlines with quantum group invariance. As an oustanding example, the Poisson homogeneous space of worldlines coming from the κappa-Poincaré deformation is explicitly constructed, and shown to define a symplectic structure on the space of worldlines. Therefore, the quantum space of κappa-Poincaré worldlines is just the direct product of three Heisenberg-Weyl algebras in which the inverse of the kappa parameter plays the very same role as the Planck constant ℏ in quantum mechanics. In this way, noncommutative spaces of worldlines are shown to provide a new suitable and fully explicit arena for the description of quantum observers with quantum group symmetry.

# Drinfel’d double structures for Poincaré and Euclidean groups

In this contribution (**arXiv:1812.02075**) all non-isomorphic three-dimensional Poisson homogeneous Euclidean spaces are constructed and analyzed, based on the classification of coboundary Lie bialgebra structures of the Euclidean group in 3-dimensions, and the only Drinfel’d double structure for this group is explicitly given. The similar construction for the Poincaré case is reviewed and the striking differences between the Lorentzian and Euclidean cases are underlined. Finally, the contraction scheme starting from Drinfel’d double structures of the so(3,1) Lie algebra is presented.

# Seminar “Krein spaces and dynamics of non-hermitian Hamiltonians”

Speaker:** Romina Ramírez (Universidad Nacional de la Plata, Argentina)**

Date and time: November 6, 11:30 h

Place: Aula 24, Facultad de Ciencias

# Seminar “Thermal and spectral dimension of Snyder noncommutative spacetimes”

Speaker:** Giulia Gubitosi (Radboud University, Nijmegen and La Sapienza University, Rome)**

Date and time: October 16, 17:30 h

Place: Aula 14, Facultad de Ciencias

# The Poincaré group as a Drinfel’d double

In this new paper (**arXiv:1809.09207**) the eight nonisomorphic Drinfel’d double (DD) structures for the Poincaré Lie group in (2+1) dimensions are explicitly constructed in the kinematical basis. Also, the two existing DD structures for a non-trivial central extension of the (1+1) Poincaré group are also identified and constructed, while in (3+1) dimensions no Poincaré DD structure does exist. Each of the DD structures here presented has an associated canonical quasitriangular Poincaré r-matrix whose properties are analysed. Some of these r-matrices give rise to coisotropic Poisson homogeneous spaces with respect to the Lorentz subgroup, and their associated Poisson Minkowski spacetimes are constructed. Two of these (2+1) noncommutative DD Minkowski spacetimes turn out to be quotients by a Lorentz Poisson subgroup: the first one corresponds to the double of 𝔰𝔩(2) with trivial Lie bialgebra structure, and the second one gives rise to a quadratic noncommutative Poisson Minkowski spacetime. With these results, the explicit construction of DD structures for all Lorentzian kinematical groups in (1+1) and (2+1) dimensions is completed, and the connection between (anti-)de Sitter and Poincaré r-matrices through the vanishing cosmological constant limit is also analysed.

# Global versus local superintegrability of nonlinear oscillators

Liouville (super)integrability of a Hamiltonian system of differential equations is based on the existence of globally well-defined constants of the motion, while Lie point symmetries provide a local approach to conserved integrals. In this new paper (**arXiv:1809.02248**) we investigate in which sense Lie point symmetries can be used to provide information concerning the superintegrability of a given Hamiltonian system. The two-dimensional oscillator and the central force problem are used as benchmark examples to show that the relationship between standard Lie point symmetries and superintegrability is neither straightforward nor universal. In general, it turns out that superintegrability is not related to either the size or the structure of the algebra of variational dynamical symmetries. Nevertheless, all of the first integrals for a given Hamiltonian system can be obtained through an extension of the standard point symmetry method, which is applied to a superintegrable nonlinear oscillator describing the motion of a particle on a space with non-constant curvature and spherical symmetry.